本文介绍了车载充电机 (OBC) 系统的设计思路,以及 SiC 在 OBC 应用中相比 Si 的优势,且重点关注双向充电机。Si 基和 SiC 基 OBC 的参考设计比较,详细地说明了在 OBC 应用中 SiC 相比 Si 的实际优势,同时还进行了成本节约分析,并介绍了其为系统带来的具体好处。
Wolfspeed 专长 SiC 系统的设计和开发,覆盖从基础晶圆开发到采用 SiC 器件的设计和支持。表 1 详细说明了 SiC 的优点,以及 Wolfspeed 在 SiC 领域的专长能够带来的综合优势。
表1
基于这些原因,充电时间和充电后的有效车辆续航里程成为车辆制造商的关键参数,而这两个因素由电池尺寸和额定充电功率所决定。充电功率范围从 3.3 kW 和 6.6 kW 的低功率单相系统到 11 kW 和 22 kW 的大功率系统。图 1 展示了 3.3 kW、6.6 kW、11 kW 和 22 kW OBC 相关的典型车型、电池尺寸、从 0% 至 100% 的充电时间以及竞争性技术。
车型涵盖从通勤汽车 BEV 到类似电动卡车等更大型且更高性能的 BEV。如图所示,即使充电功率高 3 倍多,更大容量的车辆从 0% 到 100% 的充电时间仍更长。这使得 OBC 尤其适合大功率系统,也就是说,可以使得损耗的功率更少,充电速度也更快。
除了 OBC 效率之外,成本、重量和尺寸等参数也非常关键,这可为空间余量有限的车辆更轻松地安装更小型、更轻量的 OBC。此外,消费者和 OEM 承担的 OBC 成本将直接影响制造商的资本支出/最终赢利,以及消费者购买的意愿。为了保持竞争力,OBC 必须帮助电动汽车达到内燃机车辆的价格点。
22kW 双向 OBC 设计:Si 与 SiC 设计样本对比
双向功率流的好处
从完善的产品组合到详尽的工程和应用支持,以及在线模拟平台和行业专家,Wolfspeed 能为 SiC 系统的设计和开发打下全面而坚实的基础。这些已经开始在 SiC 基 OBC 应用中有所呈现,OEM 厂商可通过在其新一代设计中采用这一备受欢迎的技术而获益,同时也为客户提供物料清单 BOM 成本的节约以及由高效率设计所带来的成本降低。
■ 知识充电站
■ 科普图解篇
■ 深度原创篇






