Unet——用于图像边缘检测,是FCN的改进
如上图是UNET的架构图,可以发现器输入图像和输出图像不一致,如果我们需要输入图像和输出图像一致时,在卷积时,使用padding=“SAME”即可,然后再边缘检测时,就相当与像素级别的二分类问题,用交叉熵做loss函数即可。但位置检测常用IOU作为loss函数。
个人觉得UNET的优点:
1.Unet的去除了全链接层,可以接受图像大小不一致的输入(在训练时,同一个批图像大小可以不一致吗?)
2.Unet的最重要的是,他还保留了位置信息,讲低级特征图和编码部分对应连接,保留位置信息,所以可以用于图像生成、图像的语义分割和GAN相结合等等,和胶囊网络的比较?
3. U-Net: Convolutional Networks for Biomedical Image Segmentation,是边缘检测的论文,边缘检测这类问题,标签数据是非常少且昂贵的,而要训练deep network需要很多数据,所以应该应用用了图像镜像,图像扭曲,仿射变换等图像增强技术。
tensorflow的实现
#coding:utf-8
import tensorflow as tf
import argparse
import Augmentor
import os
import glob
from PIL import Image
import numpy as np
from data import *
parser = argparse.ArgumentParser()
parser.add_argument('--image_size', type=int, default=512)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--n_epoch', type=int, default=2000)
param = parser.parse_args()
def conv_pool(input,filters_1,filters_2,kernel_size,name = 'conv2d'):
with tf.variable_scope(name):
conv_1 = tf.layers.conv2d(inputs=input,filters= filters_1,kernel_size=kernel_size,padding="same",
activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_1")
conv_2 = tf.layers.conv2d(inputs=conv_1,filters= filters_2,kernel_size=kernel_size,padding="same",
activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_2")
pool = tf.layers.max_pooling2d(inputs = conv_2,pool_size = [2,2],strides = 2,padding = "same",name = 'pool')
return conv_2,pool
def upconv_concat(inputA,inputB,filters,kernel_size,name="upconv"):
with tf.variable_scope(name):
up_conv = tf.layers.conv2d_transpose(inputs = inputA,filters = filters,kernel_size = kernel_size,strides = (2,2),padding ="same",
activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = 'up_conv')
return tf.concat([up_conv, inputB], axis=-1, name="concat")
class U_net(object):
def __init__(self):
self.name = "U_NET"
def __call__(self,x,reuse = False):
with tf.variable_scope(self.name) as scope:
if reuse:
scope.reuse_variables()
conv_1,pool_1 = conv_pool(x,64,64,[3,3],name="conv_pool_1")
conv_2,pool_2 = conv_pool(pool_1,128,128,[3,3],name="conv_pool_2")
conv_3,pool_3 = conv_pool(pool_2,256,256,[3,3],name="conv_pool_3")
conv_4,pool_4 = conv_pool(pool_3,512,512,[3,3],name="conv_pool_4")
conv_5,pool_5 = conv_pool(pool_4,1024,1024,[3,3],name="conv_pool_5")
upconv_6 = upconv_concat(conv_5,conv_4,512,[2,2],name="upconv_6")
conv_6,pool_6 = conv_pool(upconv_6,512,512,[3,3],name="conv_pool_6")
upconv_7 = upconv_concat(conv_6,conv_3,256,[2,2],name="upconv_7")
conv_7,pool_7 = conv_pool(upconv_7,256,256,[3,3],name="conv_pool_7")
upconv_8 = upconv_concat(conv_7,conv_2,128,[2,2],name="upconv_8")
conv_8,pool_8 = conv_pool(upconv_8,128,128,[3,3],name="conv_pool_8")
upconv_9 = upconv_concat(conv_8,conv_1,64,[2,2],name="upconv_9")
conv_9,pool_9 = conv_pool(upconv_9,64,64,[3,3],name="conv_pool_9")
conv_10 = tf.layers.conv2d(inputs=conv_9,filters= 2,kernel_size=[3,3],padding="same",
activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_10")
output_image = tf.layers.conv2d(inputs=conv_10,filters= 1,kernel_size=[1,1],padding="same",
activation=tf.nn.sigmoid,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "output_image")
return output_image
@property
def vars(self):
return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
class U_net_train(object):
def __init__(self,unet,data,name = "unet_train"):
self.name = name
self.unet = unet
self.imagesize = param.image_size
self.train_data = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_data")
tf.summary.image("train_image",self.train_data,2)
self.train_label = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_label")
tf.summary.image("train_label",self.train_label,2)
self.data = data
self.predict_label = self.unet(self.train_data)
tf.summary.image("output_image",self.predict_label,2)
with tf.name_scope('loss'):
self.loss = - tf.reduce_mean(self.train_label * tf.log(self.predict_label + 1e-8) + (1-self.train_label) * tf.log(1 - self.predict_label + 1e-8 ))
tf.summary.scalar('loss',self.loss)
#self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = self.train_label,logits = self.predict_label,name = 'loss'))
with tf.name_scope("train"):
self.optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.loss)
self.saver = tf.train.Saver()
gpu_options = tf.GPUOptions(allow_growth = True)
with tf.name_scope('init_sessoin'):
self.sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
#self.sess = tf.Session()
self.merged = tf.summary.merge_all()
def train(self, sample_dir, restore = False,ckpt_dir='ckpt'):
if restore:
print("hhhh")
self.saver.restore(self.sess,"ckpt/unet.ckpt")
self.sess.run(tf.global_variables_initializer())
writer = tf.summary.FileWriter("./logs_1/", self.sess.graph)
for epoch in range(param.n_epoch):
images, labels = self.data(param.batch_size)
loss,_,rs = self.sess.run([self.loss,self.optimizer,self.merged],feed_dict={self.train_data: images, self.train_label: labels})
writer.add_summary(rs, epoch)
if epoch % 50 == 1:
print('Iter: {}; loss: {:.10}'.format(epoch, loss))
if (epoch + 21) % 100 == 1:
self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
self.test()
self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
def test(self):
#test_image = glob.glob("./data/test/*.tif")
test_images = np.zeros((1,512,512,1))
for i in range(1):
test_images[i,:,:,:] = np.array(Image.open("./data/test/"+str(i)+".tif")).reshape(512,512,1)/255.
#saver = tf.train.Saver()
#gpu_options = tf.GPUOptions(allow_growth=True)
#self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
self.saver.restore(self.sess,"ckpt/unet.ckpt")
#test_labels = self.unet(test_images,reuse = True)
test_labels = self.sess.run(self.predict_label,feed_dict={self.train_data: test_images})
for i in range(1):
image = test_labels[i,:,:,:] * 255.
testimage = image.reshape((512,512))
testimage =testimage.astype(np.uint8)
im = Image.fromarray(testimage)
im.save("./data/test/label"+str(i)+".tif")
if __name__ == '__main__':
# constraint GPU
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
unet = U_net()
data = DATA()
u_train = U_net_train(unet,data)
u_train.train("./data/model/",restore=False)
u_train.test()
View Code
效果图
踩过的坑,原论文中网络之后一层变成2个通道的没加,直接加上了输出通道效果一直不好,个人以为可能特征太多,没有转化为高级特征,所以造成不收敛效果不好的问题。
因tensorboard的图太大,这里就截个一个tensorboard的局部图:
免责声明:本文系网络转载或改编,未找到原创作者,版权归原作者所有。如涉及版权,请联系删