搜索
使用TensorFlow训练NLP模型的实践
现在让我们用Tensorflow实现一个具体的Input pipeline,我们使用CoCo2014作为处理对象,网上应该可以下载到CoCo训练集,train2014这个文件。
2019年技术之争:TensorFlow是否黯然失色?
2018年9月,作者曾就需求、使用和受欢迎程度三方面比较了所有主要的深度学习框架,其中TensorFlow是无可争议的重量级冠军,PyTorch是赢得大量口碑的后起之秀。
谷歌转向JAX,TensorFlow未来何在?
养了七年的TensorFlow终于还是被Meta的PyTorch干趴下了,在一定程度上。 谷歌眼见不对,赶紧又要了一个——「JAX」,一款全新的机器学习框架。
TensorFlow2020实战:Tensorflow.js在计算机视觉中的应用
你有没有关注最近有没有看TensorFlow2020峰会?今年,TensorFlow团队发布了很多非常酷的产品,本文就将介绍如何使用tensorflow.js模型执行计算机视觉应用程序。
Win10 Anaconda搭建TensorFlow-GPU环境(CUDA 10.0+cuDNN 7.0)
Tensorflow有两个版本:GPU和CPU版本,CPU的很好安装;GPU 版本需要 CUDA 和 cuDNN 的支持,如果你是独显+集显,那么推荐你用GPU版本的,因为GPU对矩阵运算有很好的支持,
TensorFlow结合OpenCV实现口罩检测功能
在这段艰难的疫情期间,我们决定建立一个非常简单和基本的卷积神经网络(CNN)模型,使用TensorFlow与Keras库和OpenCV来检测人们是否佩戴口罩。
TensorFlow SSD网络源码深度解析(版本适用)
SSD网络tensorflow版本源码深入分析 以VGG-16作为特征提取层实现SSD网络的代码,解读SSD网络代码实现的各个细节,从输入参数、默认框的位置匹配、宽高比率、放缩比率、各层默认框的生成、到损失函数计算
TensorFlow入门:实现简单线性回归(第10讲)
本小节直接从 TensorFlow contrib 数据集加载数据。使用随机梯度下降优化器优化单个训练样本的系数。 实现简单线性回归的具体做法 导入需要的所有软件包: 在神经网络中,
TensorFlow新手之路:深入理解队列机制
TensorFlow 队列 队列(Queue)是一种最为常用的数据输入输出方式,其通过先进先出的线性数据结构,一端只负责增加队列中的数据元素,而数据的输出和删除在队列的另一端实现。
TensorFlow实战:宝可梦分类识别系统
本次项目是基于tensorflow的宝可梦图像识别,本次数据有五组图像数据 一、导入相应的包 二、加载数据 这是一个使用Keras构建的卷积神经网络模型。
TensorFlow 2卷积神经网络源码解析
最后手写python代码实现卷积过程,让Tensorflow卷积在我们面前不再是黑箱子!
Java环境下TensorFlow数据集训练方法
在之前的TensorFlow学习笔记——图像识别与卷积神经网络中了解了一下经典的卷积神经网络模型LeNet模型。那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练。
TensorFlow架构源码解读与架构图示
3 系统架构 系统整体组成:Tensorflow的系统结构以C API为界,将整个系统分为前端和后端两个子系统: 前端构造计算图 后端执行计算图,可再细分为: 运行时:提供本地模式和分布式模式 计算层:
Google Play Services新增TensorFlow Lite支持
近些年来,各大科技公司都在致力于人工智能与机器学习的研究,其中 Google 是在该领域发展最为迅速的公司,如今 Google 已经将这些技术运用于搜索、邮件、翻译、助手等多个领域。在今年的 Google I/O 2021 上,Google 还对外展示了 LaMDA(Language Model for Dialogue Applications) ,这是一个利用 AI 技术...
TensorFlow深度解析:DC-VNet实战
今天将分享Unet的改进模型DC-UNet,改进模型来自2020年的论文《DC-UNet Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images Segmentation》,通过理解该模型思想,在VNet基础上可以做同样的改进。 一、原始Unet网络 1、 原始Unet有一些缺陷...
TensorFlow优化策略深度对比
优化器总结 机器学习中,有很多优化方法来试图寻找模型的最优解。比如神经网络中可以采取最基本的梯度下降法。 梯度下降法(Gradient Descent) 梯度下降法是最基本的一类优化器,目前主要分为三种梯度下降法:标准梯度下降法(GD, Gradient Descent)...
YOLOv2检测算法的TensorFlow实现
一、全部代码解读如下: 1、model_darknet19.py:yolo2网络模型——darknet19。 YOLOv2采用了一个新的基础模型(特征提取器),称为Darknet-19,包括19个卷积层和5个maxpooling层,如下图。Darknet-19与VGG16模型设计原则是一致的,主要采用3*3卷积,采用2*2的maxpooling层之后,特征图维度降低2倍...
TensorFlow入门指南:MA-UNet解析
今天将分享Unet的改进模型MA-UNet,改进模型来自2020年的论文《MA-Unet: An improved version of Unet basedon multi-scale and attention mechanism for medical image segmentation》,简单明了给大家分析理解该模型思想...
PyTorch与TensorFlow数据互通教程
Tensor是一种特殊的数据结构,非常类似于数组和矩阵。在PyTorch中,我们使用tensor编码模型的输入和输出,以及模型的参数。 Tensor类似于Numpy的数组,除了tensor可以在GPUs或其它特殊的硬件上运行以加速运算。如果熟悉ndarray,那么你也会熟悉Tensor API。如果不是,跟随此快速API上手...
TensorFlow HOWTO 多层感知机(分类)
多层感知机(分类) 这篇文章开始就是深度学习了。多层感知机的架构是这样: 输入层除了提供数据之外,不干任何事情。隐层和输出层的每个节点都计算一次线性变换,并应用非线性激活函数。隐层的激活函数是压缩性质的函数。输出层的激活函数取决于标签的取值范围。 其本质上相当于广义线性回归模型的集成。 操作步骤 导入所需的包...
姓名不为空
手机不正确
公司不为空